Let P = set of families buying A,
Q = set of families buying B
and R = set of families buying C.
$\therefore n\left(P\right) 40\%$ of $10,000 = 4,000$, similarly
$n\left(Q\right) = 2,000 , n\left(R\right) = 1,000$
$n\left(P \cap Q\right) = 500, n \left(Q \cap R\right) = 300$
$n \left(P \cap R\right) = 400$ and n $\left(P \cap Q\cap R\right) = 200$
$\left(i\right)$ Number of families buying only $A = n\left(P \cap Q' \cap R'\right)$
$= n \left(P \cap \left(Q \cup R\right)'\right) = n\left(P\right) -n\left(P \cap \left(Q \cup R\right)\right)$
$= n\left(P\right) -\left[n\left(P\cap Q\right) + n\left(P\cap R\right) - n\left(\left(P\cap Q\right)I\left(P\cap R\right)\right)\right]$
$= n\left(P\right) - n\left(P\cap Q\right) - n\left(P\cap R\right) + n\left(P\cap Q\cap R\right)$.
$= 4,000 - 500 - 400 + 200 = 3,300$.
$\left(ii\right)$ Number of families buying only B
$= n\left(Q\right) - n\left(P\cap Q\right) - n\left(Q\cap R\right) + n\left(P\cap Q\cap R\right)$
$\left[see \left(i\right)\right]$
$= 2,000 - 500 - 300 + 200 = 1,400$.
$\left(iii\right)$ Number of families buying none of A, B and
$C = n\left(P'\cap Q'\cap R'\right) = n\left(P'\cap \left(Q\cup R\right) '\right)$
$= n\left(P\cup \left(Q\cup R\right)\right) ' =10000 - n\left(P\cup Q\cup R\right)$
$= 10,000- \left[n\left(P\right) +n\left(Q\right) +n\left(R\right)- n\left(P \cap Q\right)-n\left(Q \cap R\right) - n\left(P \cap R\right) + \left(P\cap Q \cap R\right)\right]$
$= 10,000 - \left[4,000 + 2,000 + 1,000 - 500 - 300 - 400 + 200\right]$
$= 10, 000 - 6,000 = 4,000.$
Note : For sets A, B, we have
$\left(A\cap B\right)\cup \left(A\cap B'\right) = A\cap \left(B\cup B'\right) = A\cap U = A$
and $\left(A\cap B\right)\cap \left(A\cap B'\right) = A\cap \left(B\cap B'\right) = A\cap f = f$
$\therefore n\left(A\right) = n\left(A\cap B\right) + n\left(A\cap B'\right) or n\left(A\cap B'\right)$
$= n\left(A\right) - n\left(A\cap B\right)$
Replacing A by P and B by $Q \cup R$, we have
$n \left(P\cap\left(Q\cup R\right) '\right) = n\left(P\right) - n\left(P\cap \left(Q\cup R\right)\right)$ etc.
Hence all options are correct.