Step 1: Understanding the transition function.
In a Turing Machine, the transition function \( \delta \) specifies the next state based on the current state \( q \) and the symbol \( a \) read from the tape. The function is defined for all pairs \( (q, a) \), meaning for each state and tape symbol combination, there is a defined transition.
Step 2: Conclusion.
Thus, the transition function \( \delta \) is defined for all elements of \( (q, a) \in Q \times \Gamma \), making the correct answer (3).
Match List-I with List-II 
Match List-I with List-II\[\begin{array}{|c|c|} \hline \textbf{Provision} & \textbf{Case Law} \\ \hline \text{(A) Strict Liability} & \text{(1) Ryland v. Fletcher} \\ \hline \text{(B) Absolute Liability} & \text{(II) M.C. Mehta v. Union of India} \\ \hline \text{(C) Negligence} & \text{(III) Nicholas v. Marsland} \\ \hline \text{(D) Act of God} & \text{(IV) MCD v. Subhagwanti} \\ \hline \end{array}\]