Step 1: Write the equation.
The given equation is:
\[
\frac{1}{9!} + \frac{1}{10!} = \frac{x}{11!}
\]
Step 2: Simplify the terms.
We can factor \( \frac{1}{9!} \) out of the left-hand side of the equation:
\[
\frac{1}{9!} \left( 1 + \frac{1}{10} \right) = \frac{x}{11!}
\]
\[
\frac{1}{9!} \left( \frac{10 + 1}{10} \right) = \frac{x}{11!}
\]
\[
\frac{1}{9!} \times \frac{11}{10} = \frac{x}{11!}
\]
Step 3: Further simplify.
Now, multiply both sides by \( 11! \) to isolate \( x \):
\[
\frac{11!}{9! \times 10} = x
\]
\[
x = \frac{11 \times 10!}{10} = 120
\]
Thus, the value of \( x \) is 120. Therefore, the correct answer is 2. 120.