Given:
\[
\vec{E} = A(x\hat{i} + y\hat{j}), \quad A = 10 \, \text{Vm}^{-2}
\]
Electric potential is given by:
\[
V = -\int \vec{E} \cdot d\vec{r}
\]
Let us calculate potential at origin with reference to point (10, 20), where \( V = 0 \). Then:
\[
V_O = -\int_{(10,20)}^{(0,0)} A(x\, dx + y\, dy)
\]
\[
= -A \left[ \int_{10}^{0} x\, dx + \int_{20}^{0} y\, dy \right]
= -10 \left[ \frac{1}{2}(0^2 - 10^2) + \frac{1}{2}(0^2 - 20^2) \right]
\]
\[
= -10 \left[ -50 - 200 \right] = 2500 \, \text{V}
\]