A fixed control volume has four one-dimensional boundary sections (1, 2, 3, and 4). For a steady flow inside the control volume, the flow properties at each section are tabulated below:
The rate of change of energy of the system which occupies the control volume at this instant is \( E \times 10^6 \, {J/s} \). The value of \( E \) (rounded off to 2 decimal places) is ........
A liquid flows under steady and incompressible flow conditions from station 1 to station 4 through pipe sections P, Q, R, and S as shown in the figure. Consider, \( d \), \( V \), and \( h \) represent the diameter, velocity, and head loss, respectively, in each pipe section with subscripts ‘P’, ‘Q’, ‘R’, and ‘S’. \( \Delta h \) represents the head difference between the inlet (station 1) and outlet (station 4). All the pipe sections are placed on the same horizontal plane for which the figure shows the top view.
(Insert diagram here, if possible)
Figure shows the steady and incompressible flow of a fluid in the direction of the arrow from section A to section D. Three pipe connectors are to be placed between sections at A and D having Total Energy Line (TEL) and Hydraulic Grade Line (HGL) as depicted in the figure. Consider, \( g \), \( P \), \( Q \), \( V \), \( \gamma \), and \( Z \) denote gravitational acceleration, pressure, volume flow rate, velocity, specific weight, and elevation of the centerline of the pipe connectors from the datum, respectively. Which one of the following options, in sequence, indicates the correct nature of connectors between sections A and B, B and C, and C and D in the direction of flow?
When the enable data input \( D = 1 \), select inputs \( S_1 = S_0 = 0 \) in the 1×4 Demultiplexer, then the outputs \( Y_0, Y_1, Y_2, Y_3 \) are
The \( Z \) parameter \( Z_{21} \) of the following circuit is
The \( h \) parameters of the following circuit is
For an input voltage \( v = 10 \sin 1000t \), the Thevenin's impedance at the terminals X and Y for the following circuit is