To solve this problem, we need to understand the principle of a potentiometer. A potentiometer is used to measure the electromotive force (EMF) of a cell by balancing it against a known potential difference. The balancing length (or null point) of the wire in the potentiometer setup is proportional to the EMF of the cell connected.
Let's analyze the given data and solve step-by-step:
Therefore, the balance point for the second cell with an EMF of \(2.5\, V\) occurs at \(60\, cm\) of the wire.
The correct option is: 60 cm.

The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
A Wheatstone bridge is initially at room temperature and all arms of the bridge have same value of resistances \[ (R_1=R_2=R_3=R_4). \] When \(R_3\) resistance is heated, its resistance value increases by \(10%\). The potential difference \((V_a-V_b)\) after \(R_3\) is heated is _______ V. 
What is Microalbuminuria ?
The output (Y) of the given logic implementation is similar to the output of an/a …………. gate.
Current electricity is defined as the flow of electrons from one section of the circuit to another.
There are two types of current electricity as follows:
The current electricity whose direction remains the same is known as direct current. Direct current is defined by the constant flow of electrons from a region of high electron density to a region of low electron density. DC is used in many household appliances and applications that involve a battery.
The current electricity that is bidirectional and keeps changing the direction of the charge flow is known as alternating current. The bi-directionality is caused by a sinusoidally varying current and voltage that reverses directions, creating a periodic back-and-forth motion for the current. The electrical outlets at our homes and industries are supplied with alternating current.