Step 1: Recall the Mass-Action Law.
For a semiconductor in thermal equilibrium, the product of the electron concentration (n) and the hole concentration (p) is a constant, equal to the square of the intrinsic carrier concentration (\(n_i\)).
\[ n \cdot p = n_i^2 \]
Step 2: Identify the given values.
Hole concentration (in p-type material, p \(\approx N_A\)): \( p = 2.25 \times 10^{15} \text{ cm}^{-3} \).
Intrinsic carrier concentration: \( n_i = 1.5 \times 10^{10} \text{ cm}^{-3} \).
Step 3: Solve for the electron concentration (n).
Rearrange the mass-action law formula:
\[ n = \frac{n_i^2}{p} \]
Substitute the given values:
\[ n = \frac{(1.5 \times 10^{10})^2}{2.25 \times 10^{15}} = \frac{2.25 \times 10^{20}}{2.25 \times 10^{15}} \]
\[ n = 1 \times 10^{(20-15)} = 10^5 \text{ cm}^{-3} \]