In a meter bridge experiment, for measuring unknown resistance ‘S’, the null point is obtained at a distance 30 cm from the left side as shown at point D. If R is 5.6 kΩ, then the value of unknown resistance ‘S’ will be ___Ω.
The correct answer is 2400
\(\frac{R}{S}=\frac{70}{30}\)
\(S=\frac{3}{7}×5.6×10^3\)
\(=2.4×10^3Ω=2400Ω\)
\(\therefore\) the value of unknown resistance ‘S’ will be 2400Ω.
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is:
Electromagnetic Induction is a current produced by the voltage production due to a changing magnetic field. This happens in one of the two conditions:-
The electromagnetic induction is mathematically represented as:-
e=N × d∅.dt
Where