Step 1: Write down the numbers.
We are given 6 integers: \(20, 4, 10, 4, 8, 4\) and an unknown \(x\). So the set is: \[ \{4, 4, 4, 8, 10, 20, x\} \]
Step 2: Mode of the set.
Since 4 occurs three times, the mode is always 4 (irrespective of \(x\)).
Step 3: Mean of the set.
Sum = \(4+4+4+8+10+20+x = 50+x\). Mean = \(\dfrac{50+x}{7}\).
Step 4: Median of the set.
The median depends on where \(x\) is placed in the sorted order. - If \(x < 4\): order \(x, 4, 4, 4, 8, 10, 20\). Median = 4. - If \(4 < x < 8\): order \(4, 4, 4, x, 8, 10, 20\). Median = \(x\). - If \(x \geq 8\): order \(4, 4, 4, 8, 10, 20, x\). Median = 8. So: \[ \text{Median} = \begin{cases} 4, & x < 4 \\ x, & 4 < x < 8 \\ 8, & x \geq 8 \end{cases} \]
Step 5: AP condition.
We need {mean, median, mode} in arithmetic progression. Mode = 4. Case 1: \(x < 4\)
Median = 4, Mode = 4. Then AP requires mean = 4. \[ \frac{50+x}{7} = 4 \;\;\Rightarrow\;\; 50+x = 28 \;\;\Rightarrow\;\; x=-22 \] Invalid. Discard.
Case 2: \(4 < x < 8\)
Median = \(x\), Mode = 4. AP terms: \(\{4, x, \tfrac{50+x}{7}\}\). For AP: \[ x-4 = \frac{50+x}{7} - x \] \[ \Rightarrow 7(x-4) = 50+x-7x \] \[ \Rightarrow 7x-28 = 50-6x \] \[ \Rightarrow 13x = 78 \;\;\Rightarrow\;\; x=6 \] Valid since \(4 < x < 8\).
Case 3: \(x \geq 8\)
Median = 8, Mode = 4. AP: \(\{4, 8, \tfrac{50+x}{7}\}\). \[ 8-4 = \frac{50+x}{7} - 8 \] \[ 4 = \frac{50+x}{7} - 8 \] \[ \frac{50+x}{7} = 12 \;\;\Rightarrow\;\; 50+x=84 \;\;\Rightarrow\;\; x=34 \] Valid since \(x \geq 8\).
Step 6: Possible values of \(x\).
So, \(x\) can be \(6\) or \(34\).
Step 7: Required sum.
\[ 6+34=40 \]
Final Answer:
\[ \boxed{40} \]
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
---|---|---|---|---|---|---|
Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
Variance of the following discrete frequency distribution is:
\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Class Interval} & 0-2 & 2-4 & 4-6 & 6-8 & 8-10 \\ \hline \text{Frequency (}f_i\text{)} & 2 & 3 & 5 & 3 & 2 \\ \hline \end{array} \]
A | B | C | D | Average |
---|---|---|---|---|
3 | 4 | 4 | ? | 4 |
3 | ? | 5 | ? | 4 |
? | 3 | 3 | ? | 4 |
? | ? | ? | ? | 4.25 |
4 | 4 | 4 | 4.25 |