Step 1: Understanding the Bohr Model and Energy Levels
In the Bohr model of the hydrogen atom, the energy of an electron in the $ n $-th orbit is given by:
$$
E_n = -\frac{R_h}{n^2}
$$
where:
$ R_h $ is the Rydberg constant,
$ n $ is the principal quantum number.
The energy difference between two orbits ($ n_1 $ and $ n_2 $) when an electron transitions is:
$$
\Delta E = E_{n_2} - E_{n_1} = -R_h \left( \frac{1}{n_2^2} - \frac{1}{n_1^2} \right)
$$
For the transition from the fourth orbit ($ n_1 = 4 $) to the second orbit ($ n_2 = 2 $):
$$
\Delta E = -R_h \left( \frac{1}{2^2} - \frac{1}{4^2} \right)
$$
$$
\Delta E = -R_h \left( \frac{1}{4} - \frac{1}{16} \right)
$$
$$
\Delta E = -R_h \left( \frac{4}{16} - \frac{1}{16} \right) = -R_h \left( \frac{3}{16} \right)
$$
$$
\Delta E = -\frac{3R_h}{16}
$$
The negative sign indicates that energy is released during the transition.
Step 2: Relating Energy to Wavelength
The energy of a photon is related to its wavelength by:
$$
E = \frac{hc}{\lambda}
$$
where:
$ h $ is Planck's constant,
$ c $ is the speed of light,
$ \lambda $ is the wavelength.
For the emitted radiation:
$$
\Delta E = \frac{hc}{\lambda}
$$
Substitute $ \Delta E = \frac{3R_h}{16} $:
$$
\frac{3R_h}{16} = \frac{hc}{\lambda}
$$
Solve for $ \lambda $:
$$
\lambda = \frac{16hc}{3R_h}
$$
Using the relationship $ R_h = \frac{hc}{R} $, where $ R $ is the Rydberg constant:
$$
\lambda = \frac{16hc}{3 \cdot \frac{hc}{R}} = \frac{16R}{3}
$$
Thus, the wavelength of the emitted radiation is:
$$
\boxed{\frac{16}{3R}}
$$
Step 3: Analyzing Options
Option (1): $ \frac{16}{3R} $
Correct — matches the calculated value.
Option (2): $ \frac{8}{3R} $
Incorrect — does not match the calculation.
Option (3): $ \frac{3}{16R} $
Incorrect — incorrect numerator and denominator.
Option (4): $ \frac{3}{8R} $
Incorrect — incorrect numerator and denominator.