Let
A: Smoker & Non-vegetarian
B: Smoker & Vegetarian
C: Non-smoker & Vegetarian
D: Chest disorder
\[
P(A)=\frac{160}{400},\;
P(B)=\frac{100}{400},\;
P(C)=\frac{140}{400}
\]
\[
P(D|A)=0.35,\;
P(D|B)=0.20,\;
P(D|C)=0.10
\]
Step 1: Total probability
\[
P(D)=0.35\cdot\frac{160}{400}
+0.20\cdot\frac{100}{400}
+0.10\cdot\frac{140}{400}
=\frac{9}{40}
\]
Step 2: Apply Bayes’ theorem
\[
P(A|D)=\frac{P(D|A)P(A)}{P(D)}
= \frac{0.35\cdot\frac{160}{400}}{\frac{9}{40}}
=\frac{28}{45}
\]
\[
\boxed{\frac{28}{45}}
\]