The average of the largest 9 numbers is: \[ \frac{x_2 + x_3 + \dots + x_{10}}{9} = 47 \Rightarrow x_2 + x_3 + \dots + x_{10} = 423 \tag{1} \]
The average of the smallest 9 numbers is: \[ \frac{x_1 + x_2 + \dots + x_9}{9} = 42 \Rightarrow x_1 + x_2 + \dots + x_9 = 378 \tag{2} \]
Subtracting (2) from (1): \[ (x_2 + \dots + x_{10}) - (x_1 + \dots + x_9) = 45 \Rightarrow x_{10} - x_1 = 45 \]
From equation (1): \[ x_2 + x_3 + \dots + x_{10} = 423 \Rightarrow \text{Total sum} = x_1 + 423 \Rightarrow \text{Average} = \frac{x_1 + 423}{10} \]
\[ \text{Required difference} = 46.5 - 42.5 = \boxed{4} \]
✅ The correct answer is: \[ \boxed{4} \] (Option A)
Let the 10 numbers be represented as: \[ x(1), x(2), x(3), ..., x(10) \] where \( x(1) \) is the smallest and \( x(10) \) is the largest.
The average of the largest 9 numbers (excluding \( x(1) \)) is: \[ \frac{x(2) + x(3) + ... + x(10)}{9} = 47 \Rightarrow x(2) + x(3) + ... + x(10) = 47 \times 9 = 423 \tag{1} \]
Similarly, the average of the smallest 9 numbers (excluding \( x(10) \)) is: \[ \frac{x(1) + x(2) + x(3) + ... + x(9)}{9} = 42 \Rightarrow x(1) + x(2) + x(3) + ... + x(9) = 42 \times 9 = 378 \tag{2} \]
Subtracting (2) from (1): \[ x(10) - x(1) = 423 - 378 = 45 \Rightarrow x(10) = x(1) + 45 \]
From equation (1), we have: \[ x(2) + ... + x(10) = 423 \Rightarrow \text{Total sum} = x(1) + 423 \] \[ \Rightarrow \text{Average} = \frac{x(1) + 423}{10} \]
\[ \text{Difference in averages} = 46.5 - 42.5 = \boxed{4} \]
The correct answer is: \[ \boxed{4} \]
What is the sum of ages of Murali and Murugan?
Statements: I. Murali is 5 years older than Murugan.
Statements: II. The average of their ages is 25
When $10^{100}$ is divided by 7, the remainder is ?