For double slit experiment
\(d=1 mm = 1\times {10}^{-3} m , D=1m , \lambda = 500 \times {10}^{-9} m\)
Fringe width \(\beta = \frac{ S \lambda}{ d}\)
Width of central maxima in a single slit
As per question, width of central maxima of single
slit pattern = width of 10 maxima of double slit
pattern
\(\frac{ 2 \lambda D}{a} = 10 \bigg( \frac{\lambda D}{ d} \bigg)\)
\(a= \frac{ 2d}{10} = \frac{2 \times {10}^{-3}}{ 10}\)
\(= 0.2 \times {10}^{-3} m\)
\(= 0.2 mm\)
Therefore, the correct option is (C) : 0.2 mm
d = 10-3m
D = 1m
λ = 500×10-9m
The width of central maxima in a single slit diffraction: \(\frac{2\lambda D}{a}\)
Fringe width in double slit pattern: β= \(\frac{\lambda D}{d}\)
Given,
10β= \(\frac{2\lambda D}{a}\)
⇒10 \(\frac{\lambda D}{d}\)= \(\frac{2\lambda D}{a}\)
⇒ a= \(\frac{d}{5}\) mm
⇒ 0.2mm
Therefore, the correct option is (C) : 0.2 mm
AB is a part of an electrical circuit (see figure). The potential difference \(V_A - V_B\), at the instant when current \(i = 2\) A and is increasing at a rate of 1 amp/second is:
Read More: Young’s Double Slit Experiment