Solution:
Step 1 (Use the division algorithm).
Dividend \(= \text{Divisor} \times \text{Quotient} + \text{Remainder}\).
That is:
\[
N = d \cdot q + r.
\]
Step 2 (Substitute the given values).
\[
N = 457 \times 110 + 242.
\]
Step 3 (Compute the product carefully).
\[
457 \times 110 = 457 \times (100 + 10) = 45700 + 4570 = 50270.
\]
Step 4 (Add the remainder).
\[
N = 50270 + 242 = 50512.
\]
Step 5 (Verification).
Check the remainder is smaller than the divisor: \(242 < 457\) (vali(d).
Also,
\[
50512 - 457 \times 110 = 50512 - 50270 = 242,
\]
so the quotient and remainder are consistent.
\[
{50512 \ \text{(Option (a)}}
\]