First, calculate the Reynolds number using the formula:
\[
Re = \frac{\rho \cdot v \cdot D}{\mu}
\]
Where:
- \( \rho = 1020 \ \text{kg/m}^3 \) (density),
- \( D = 0.02 \ \text{m} \) (diameter),
- \( \mu = 1.20 \times 10^{-3} \ \text{kg/(m·s)} \)
(viscosity),
- \( v \) is the velocity of the milk.
From the heat loss equation:
\[
Q = \dot{m} \cdot c_p \cdot \Delta T
\]
Where:
- \( \dot{m} \) is the mass flow rate,
- \( c_p = 3.85 \ \text{kJ/kg·K} \),
- \( \Delta T = 60^\circ C - 57^\circ C = 3^\circ C \).
The mass flow rate is:
\[
\dot{m} = \frac{Q}{c_p \cdot \Delta T} = \frac{381.15}{3.85 \times 3} = 33.06 \ \text{kg/s}
\]
Now, calculate the velocity \( v \) using the mass flow rate formula:
\[
\dot{m} = \rho \cdot v \cdot A
\]
Where \( A \) is the cross-sectional area of the tube:
\[
A = \pi \times \left(\frac{D}{2}\right)^2 = \pi \times \left(\frac{0.02}{2}\right)^2 = 3.14 \times 0.0001 = 3.14 \times 10^{-5} \ \text{m}^2
\]
Now, solve for \( v \):
\[
33.06 = 1020 \times v \times 3.14 \times 10^{-5}
\]
\[
v = \frac{33.06}{1020 \times 3.14 \times 10^{-5}} = \frac{33.06}{0.03198} = 1035.1 \ \text{m/s}
\]
Finally, calculate the Reynolds number:
\[
Re = \frac{1020 \cdot 1035.1 \cdot 0.02}{1.20 \times 10^{-3}} = \frac{21142.08}{0.0012} = 17618.4
\]
Thus, the Reynolds number for the flow is:
\[
\boxed{17619}
\]