Step 1: For equimolar counter diffusion (EMD) in a binary gas at constant \(T,P\),
\[
N_{A,EMD} \;=\; \frac{D_{AB}C}{L}\,(x_{A1}-x_{A2}).
\]
Given \(x_{A1}=0.2\) (bulk gas) and \(x_{A2}=0.1\) (interface).
Step 2: For one-component diffusion of \(A\) through stagnant \(B\) (UMD),
\[
N_{A,UMD} \;=\; \frac{D_{AB}C}{L}\,\ln\!\left(\frac{1-x_{A2}}{1-x_{A1}}\right).
\]
Step 3: Take the ratio (note that \(D_{AB},\,C,\) and \(L\) cancel):
\[
\frac{N_{A,UMD}}{N_{A,EMD}}
= \frac{\ln\!\left(\dfrac{1-x_{A2}}{1-x_{A1}}\right)}{x_{A1}-x_{A2}}
= \frac{\ln\!\left(\dfrac{0.9}{0.8}\right)}{0.2-0.1}.
\]
Step 4: Evaluate numerically:
\[
\ln\!\left(\frac{0.9}{0.8}\right)=\ln(1.125)\approx 0.11778,
\quad\Rightarrow\quad
\frac{N_{A,UMD}}{N_{A,EMD}} \approx \frac{0.11778}{0.1}=1.1778 \approx \boxed{1.18}.
\]