Let the number of ₹1 coins = \( x \)
Let the number of ₹2 coins = \( y \)
Number of ₹5 coins is given = 23
Total number of coins:
\[
x + y + 23 = 150 \Rightarrow x + y = 127 \text{(1)}
\]
Total value of the coins:
\[
\text{Value} = 1 x + 2 y + 5 23 = x + 2y + 115
\]
Value of ₹1 coins = \( x \)
It is at least 50% of total value:
\[
x \geq 0.5(x + 2y + 115)
\]
Multiply both sides by 2:
\[
2x \geq x + 2y + 115 \Rightarrow x \geq 2y + 115 \text{(2)}
\]
From (1), \( x = 127 - y \). Substituting in (2):
\[
127 - y \geq 2y + 115 \Rightarrow 127 - 115 \geq 3y \Rightarrow 12 \geq 3y \Rightarrow y \leq 4
\]
Also, total value of ₹2 coins is at least 3% of total value:
\[
2y \geq 0.03(x + 2y + 115)
\]
Substitute \( x = 127 - y \) into the RHS:
\[
2y \geq 0.03(127 - y + 2y + 115) = 0.03(127 + y + 115) = 0.03(242 + y)
\]
Multiply both sides by 100 to simplify:
\[
200y \geq 3(242 + y) \Rightarrow 200y \geq 726 + 3y \Rightarrow 197y \geq 726
\Rightarrow y \geq \frac{726}{197} \approx 3.68 \Rightarrow y \geq 4
\]
So from earlier: \( y \leq 4 \), and from this: \( y \geq 4 \)
\(\Rightarrow y = 4 \)
But verify again – we must have both conditions satisfied. Let’s try \( y = 3 \):
Then \( x = 127 - 3 = 124 \)
Total value = \( 124 + 2 3 + 115 = 244 \)
Value of ₹1 coins = 124 \(\Rightarrow \frac{124}{244} \approx 50.8% \)
Value of ₹2 coins = 6 \(\Rightarrow \frac{6}{244} \approx 2.45% \)
Try \( y = 4 \Rightarrow x = 123 \Rightarrow \) Total value = \(123 + 8 + 115 = 246\)
Re.1 coins = 123 → \( \frac{123}{246} = 50% \)
₹2 coins = 8 → \( \frac{8}{246} \approx 3.25% \)
Final Answer: \( \boxed{4} \)
Wait — final working shows \( y = 4 \) is valid and satisfies both constraints.
But options only go up to 4, and from above, only \( y = 4 \) works.
Hence, correct answer is: \(\boxed{4}\) — Option
(c)