Step 1: Let \( z = x + iy \). We are given the equation:
\[
2|z - (2 + 3i)| = 3|z - (2 - i)|.
\]
Step 2: Substitute \( z = x + iy \) into the equation:
\[
2|x + iy - 2 - 3i| = 3|x + iy - 2 + i|.
\]
Step 3: Simplify both sides:
\[
2\sqrt{(x - 2)^2 + (y - 3)^2} = 3\sqrt{(x - 2)^2 + (y + 1)^2}.
\]
Step 4: Square both sides to eliminate square roots:
\[
4[(x - 2)^2 + (y - 3)^2] = 9[(x - 2)^2 + (y + 1)^2].
\]
Step 5: Let \( A = (x - 2)^2 \). Expand and simplify:
\[
4[A + (y - 3)^2] = 9[A + (y + 1)^2].
\]
Now expand both sides:
\[
4[A + y^2 - 6y + 9] = 9[A + y^2 + 2y + 1].
\]
\[
4A + 4y^2 - 24y + 36 = 9A + 9y^2 + 18y + 9.
\]
Step 6: Bring all terms to one side:
\[
(4A - 9A) + (4y^2 - 9y^2) - 24y - 18y + (36 - 9) = 0.
\]
\[
-5A - 5y^2 - 42y + 27 = 0.
\]
Step 7: Divide the entire equation by \( -5 \):
\[
A + y^2 + \frac{42}{5}y - \frac{27}{5} = 0.
\]
Recall \( A = (x - 2)^2 \), so:
\[
(x - 2)^2 + y^2 + \frac{42}{5}y = \frac{27}{5}.
\]
Step 8: Complete the square in \( y \):
\[
(x - 2)^2 + \left(y + \frac{21}{5}\right)^2 = \frac{27}{5} + \left(\frac{21}{5}\right)^2.
\]
\[
= \frac{27}{5} + \frac{441}{25} = \frac{135 + 441}{25} = \frac{576}{25}.
\]
So, the equation of the circle is:
\[
(x - 2)^2 + \left(y + \frac{21}{5}\right)^2 = \left(\frac{24}{5}\right)^2.
\]
Hence, the centre is \( \left(2, -\frac{21}{5}\right) \).