Question:

If \(z\) represents point on circle \(|z|=2\) then locus of \(z+\frac1z\) is

Show Hint

Parametrize complex circle with exponential form.
Updated On: Jan 9, 2026
  • parabola
  • circle
  • ellipse
  • hyperbola
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Let \(z=2e^{i\phi}\).
Step 2: \[ w=z+\frac1z=2e^{i\phi}+\frac12 e^{-i\phi}. \]
Step 3: Separate real and imaginary parts: \[ x=2\cos\phi+\frac12\cos\phi=\frac52\cos\phi, \] \[ y=2\sin\phi-\frac12\sin\phi=\frac32\sin\phi. \]
Step 4: Eliminate \(\phi\): \[ \frac{x^2}{(5/2)^2}+\frac{y^2}{(3/2)^2}=1. \] This is ellipse. Hence → (C).
Was this answer helpful?
0
0

Top Questions on Complex numbers

View More Questions