Rewrite \( y \) using logarithms:
\[
\ln y = \sin x \cdot \ln x.
\]
Differentiate both sides with respect to \( x \):
\[
\frac{1}{y} \frac{dy}{dx} = \cos x \cdot \ln x + \sin x \cdot \frac{1}{x}.
\]
Multiply both sides by \( y \):
\[
\frac{dy}{dx} = y \left( \cos x \ln x + \frac{\sin x}{x} \right).
\]
Substitute back \( y = x^{\sin x} \):
\[
\boxed{
\frac{dy}{dx} = x^{\sin x} \left( \cos x \ln x + \frac{\sin x}{x} \right).
}
\]