We are given:
\[
y = \tan^{-1} \left( \frac{1 - \cos x}{\sin x} \right)
\]
Use the identity:
\[
\frac{1 - \cos x}{\sin x} = \frac{2 \sin^2 \left(\frac{x}{2}\right)}{2 \sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right)} = \tan \left( \frac{x}{2} \right)
\]
So:
\[
y = \tan^{-1} \left( \tan \left( \frac{x}{2} \right) \right) = \frac{x}{2} \quad \text{(since } -\frac{\pi}{2}<\frac{x}{2}<\frac{\pi}{2})
\]
Now differentiate:
\[
\frac{dy}{dx} = \frac{d}{dx} \left( \frac{x}{2} \right) = \frac{1}{2}
\]
the question asks for:
\[
y = \tan^{-1} \left( \frac{1 - \cos x}{\sin x} \right)
\]
But let’s double-check the identity:
Let’s write numerator and denominator in terms of half-angle identities:
\[
1 - \cos x = 2 \sin^2 \left( \frac{x}{2} \right), \quad \sin x = 2 \sin \left( \frac{x}{2} \right) \cos \left( \frac{x}{2} \right)
\]
\[
\Rightarrow \frac{1 - \cos x}{\sin x} = \frac{2 \sin^2 \left( \frac{x}{2} \right)}{2 \sin \left( \frac{x}{2} \right) \cos \left( \frac{x}{2} \right)} = \frac{\sin \left( \frac{x}{2} \right)}{\cos \left( \frac{x}{2} \right)} = \tan \left( \frac{x}{2} \right)
\]
So yes, confirmed:
\[
y = \tan^{-1} \left( \tan \left( \frac{x}{2} \right) \right) = \frac{x}{2}
\Rightarrow \frac{dy}{dx} = \frac{1}{2}
\]
So the correct answer is (C) \( \frac{1}{2} \)
Fixing the answer:
Correct Answer
Correct Answer: (C) \( \frac{1}{2} \)