If \(y=\sqrt{x+\sqrt{y+\sqrt{x+\sqrt{y+\cdots}}}}\), then \(\dfrac{dy}{dx}\) is equal to
Show Hint
For infinite nested radicals, use repetition property: set the whole expression equal to \(y\), express inner radical as \(y\), then solve and differentiate.
Step 1: Use repeating nature of expression.
Given:
\[
y=\sqrt{x+\sqrt{y+\sqrt{x+\sqrt{y+\cdots}}}}
\]
The expression after first \(\sqrt{}\) repeats itself, so:
\[
y=\sqrt{x+\sqrt{y+y}}
\]
But more accurately:
Let inner part after first root be \(y\) itself:
\[
y=\sqrt{x+y}
\]
Step 2: Square both sides.
\[
y^2=x+y
\]
\[
y^2-y-x=0
\]
Step 3: Differentiate implicitly.
Differentiate w.r.t. \(x\):
\[
2y\frac{dy}{dx}-\frac{dy}{dx}-1=0
\]
\[
(2y-1)\frac{dy}{dx}=1
\]
\[
\frac{dy}{dx}=\frac{1}{2y-1}
\]
Step 4: Compare with given options.
None of the options matches \(\frac{1}{2y-1}\). Final Answer:
\[
\boxed{\text{None of these}}
\]