Step 1: Let \( y = \sqrt{\tan{x} + \sqrt{\tan{x} + \dots}} \). This implies:
\[
y = \sqrt{\tan{x} + y}
\]
Step 2: Square both sides:
\[
y^2 = \tan{x} + y
\]
Step 3: Rearrange the equation:
\[
y^2 - y - \tan{x} = 0
\]
Step 4: Differentiate implicitly with respect to \( x \):
\[
2y \frac{dy}{dx} - \frac{dy}{dx} = \sec^2{x}
\]
Step 5: Factor out \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} (2y - 1) = \sec^2{x}
\]
Step 6: Solve for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \frac{\sec^2{x}}{2y - 1}
\]
Step 7: Substitute \( y^2 - 1 = (y - 1)(y + 1) \):
\[
\frac{dy}{dx} = \sec^2{x} \cdot \frac{2y - 1}{y^2 - 1}
\]
Step 8: Evaluate at \( x = 0 \):
At \( x = 0 \), \( \tan{0} = 0 \), so \( y = 0 \).
Thus:
\[
\frac{dy}{dx} = \frac{1}{2 \cdot 0 - 1} = -1
\]
Thus, \( \frac{dy}{dx} \) at \( x = 0 \) is:
\[
\boxed{-1}
\]