We are given:
\[
y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \ldots}}}
\]
Let:
\[
y = \sqrt{\sin x + y}
\]
Now square both sides:
\[
y^2 = \sin x + y
\Rightarrow y^2 - y = \sin x \quad \cdots (1)
\]
Differentiate both sides with respect to \( x \):
\[
\frac{d}{dx}(y^2 - y) = \frac{d}{dx}(\sin x)
\Rightarrow 2y \frac{dy}{dx} - \frac{dy}{dx} = \cos x
\Rightarrow (2y - 1) \frac{dy}{dx} = \cos x
\Rightarrow \frac{dy}{dx} = \frac{\cos x}{2y - 1}
\]