Step 1: Establishing the Functional Equation Since the function follows a repeating pattern, we define: \[ y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \cdots}}} \] Since the same function appears infinitely, we square both sides: \[ y^2 = \sin x + y. \] Rearrange: \[ y^2 - y - \sin x = 0. \]
Step 2: Differentiate Implicitly Differentiating both sides with respect to \( x \): \[ 2y \frac{dy}{dx} = \cos x + \frac{dy}{dx}. \] Rearranging: \[ \frac{dy}{dx} (2y - 1) = \cos x. \] \[ \frac{dy}{dx} = \frac{\cos x}{2y - 1}. \]
Step 3: Compute Second Derivative Differentiating again and substituting \( x = \pi \), \( y = 1 \), we obtain: \[ \frac{d^2y}{dx^2} = -2. \] Thus, the correct answer is: \(Option (2): -2.\)
If \( f(x) = \begin{cases} 2x - 3, & -3 \leq x \leq -2 \\x + 1, & -2<x \leq 0 \end{cases} \), check the differentiability of \( f(x) \) at \( x = -2 \).