Step 1: First derivative. \[ \frac{dy}{dx} = \frac{1}{\sqrt{1-x^{2}}} \]
Step 2: Second derivative. \[ \frac{d^{2}y}{dx^{2}} = \frac{d}{dx}\left(\frac{1}{\sqrt{1-x^{2}}}\right) = \frac{1}{2}(1-x^{2})^{-\tfrac{3}{2}} \cdot (2x) = \frac{x}{(1-x^{2})^{\tfrac{3}{2}}} \]
Step 3: Substitute in given expression. \[ (1-x^{2}) \cdot \frac{d^{2}y}{dx^{2}} - x \cdot \frac{dy}{dx} \] \[ = (1-x^{2}) \cdot \frac{x}{(1-x^{2})^{3/2}} - x \cdot \frac{1}{\sqrt{1-x^{2}}} \] \[ = \frac{x(1-x^{2})}{(1-x^{2})^{3/2}} - \frac{x}{\sqrt{1-x^{2}}} \] \[ = \frac{x}{\sqrt{1-x^{2}}} - \frac{x}{\sqrt{1-x^{2}}} = 0 \] Hence Proved. \[ \boxed{(1 - x^{2}) \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} = 0} \]