We are given y=x−1x2.
To differentiate y, we use the quotient rule: dxdy=(x−1)2(x−1)(2x)−x2(1) Simplifying the numerator: =2x(x−1)−x2=2x2−2x−x2=x2−2x Thus: dxdy=(x−1)2x2−2x Now, substitute x=−1: dxdy=((−1)−1)2(−1)2−2(−1)=(−2)21+2=43 Thus, dxdy=43 at x=−1.