Question:

If y=x2x1 y = \frac{x^2}{x - 1} , then dydx \frac{dy}{dx} at x=1 x = -1 is:

Show Hint

Use the quotient rule to differentiate rational functions: dydx=vuuvv2 \frac{dy}{dx} = \frac{v \cdot u' - u \cdot v'}{v^2} , where u u and v v are the numerator and denominator, respectively.
Updated On: Mar 10, 2025
  • 14 \frac{1}{4}
  • 14 -\frac{1}{4}
  • 1
  • 12 -\frac{1}{2}
  • 34 \frac{3}{4}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is

Solution and Explanation

We are given y=x2x1 y = \frac{x^2}{x - 1}
To differentiate y y , we use the quotient rule: dydx=(x1)(2x)x2(1)(x1)2 \frac{dy}{dx} = \frac{(x - 1)(2x) - x^2(1)}{(x - 1)^2} Simplifying the numerator: =2x(x1)x2=2x22xx2=x22x = 2x(x - 1) - x^2 = 2x^2 - 2x - x^2 = x^2 - 2x Thus: dydx=x22x(x1)2 \frac{dy}{dx} = \frac{x^2 - 2x}{(x - 1)^2} Now, substitute x=1 x = -1 : dydx=(1)22(1)((1)1)2=1+2(2)2=34 \frac{dy}{dx} = \frac{(-1)^2 - 2(-1)}{((-1) - 1)^2} = \frac{1 + 2}{(-2)^2} = \frac{3}{4} Thus, dydx=34 \frac{dy}{dx} = \frac{3}{4} at x=1 x = -1 .

Was this answer helpful?
0
0

Questions Asked in KEAM exam

View More Questions