Step 1: As \(y\to 0\), the argument of \(\sin^{-1}\) also tends to \(0\). For small \(t\), \[ \sin^{-1} t \approx t \]
Step 2: Hence, \[ y \approx \frac{1}{2}\left(\frac{2xy}{x^2+y^2}\right) = \frac{xy}{x^2+y^2} \]
Step 3: Divide both sides by \(y\) (\(y\neq 0\)): \[ 1 \approx \frac{x}{x^2+y^2} \]
Step 4: Taking the limit \(y\to 0\): \[ 1=\frac{x}{x^2} =\frac{1}{x} \]
Step 5: Therefore, \[ x=1 \]