Step 1: Find the value of \(y\) at \(x=0\).
\[
y(0)=(1-0)(1+0)(1+0)\cdots=1
\]
Step 2: Take logarithmic differentiation.
\[
\ln y=\ln(1-x)+\ln(1+x^2)+\ln(1+x^4)+\cdots+\ln(1+x^{2^n})
\]
Differentiate both sides:
\[
\frac{1}{y}\frac{dy}{dx}
= -\frac{1}{1-x}
+ \frac{2x}{1+x^2}
+ \frac{4x^3}{1+x^4}
+ \cdots
\]
Step 3: Evaluate at \(x=0\).
At \(x=0\),
\[
\frac{2x}{1+x^2}=\frac{4x^3}{1+x^4}=\cdots=0
\]
Thus,
\[
\left.\frac{1}{y}\frac{dy}{dx}\right|_{x=0}=-1
\]
Since \(y(0)=1\),
\[
\left.\frac{dy}{dx}\right|_{x=0}=-1
\]
Hence,
\[
\boxed{-1}
\]