Step 1: Observe the structure of determinant.
Given determinant is:
\[
\Delta=
\begin{vmatrix}
a & b-y & c-z \\
a-x & b & c-z \\
a-x & b-y & c
\end{vmatrix}
\]
Step 2: Expand determinant by applying row/column operations.
Take differences to simplify:
Subtract \(R_2\) from \(R_3\):
\[
R_3 \to R_3-R_2
\Rightarrow (0,-y,z)
\]
Subtract \(R_1\) from \(R_2\):
\[
R_2 \to R_2-R_1
\Rightarrow (-x,y,0)
\]
So determinant becomes:
\[
\begin{vmatrix}
a & b-y & c-z \\
-x & y & 0 \\
0 & -y & z
\end{vmatrix}=0
\]
Step 3: Expand determinant.
Expanding along first row:
\[
a\begin{vmatrix} y & 0 \\ -y & z \end{vmatrix}
-(b-y)\begin{vmatrix} -x & 0 \\ 0 & z \end{vmatrix}
+(c-z)\begin{vmatrix} -x & y \\ 0 & -y \end{vmatrix}=0
\]
Step 4: Compute each minor.
\[
\begin{vmatrix} y & 0 \\ -y & z \end{vmatrix}=yz
\]
\[
\begin{vmatrix} -x & 0 \\ 0 & z \end{vmatrix}=-xz
\]
\[
\begin{vmatrix} -x & y \\ 0 & -y \end{vmatrix}=xy
\]
Step 5: Substitute back.
\[
a(yz)-(b-y)(-xz)+(c-z)(xy)=0
\]
\[
ayz + (b-y)xz + (c-z)xy=0
\]
Step 6: Expand.
\[
ayz + bxz - yxz + cxy - zxy = 0
\]
\[
ayz + bxz + cxy - xyz - xyz = 0
\]
\[
ayz + bxz + cxy - 2xyz = 0
\]
Step 7: Divide by \(xyz\).
\[
\frac{ayz}{xyz}+\frac{bxz}{xyz}+\frac{cxy}{xyz}-2=0
\]
\[
\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2
\]
Final Answer:
\[
\boxed{2}
\]