Differentiate \(x\) and \(y\) with respect to \(t\):
\[
\frac{dx}{dt} = \frac{1}{2\sqrt{1 + t^2}} \times 2t = \frac{t}{\sqrt{1 + t^2}},
\]
\[
\frac{dy}{dt} = \frac{1}{2\sqrt{1 - t^2}} \times (-2t) = \frac{-t}{\sqrt{1 - t^2}}.
\]
Using the chain rule for parametric functions:
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-t / \sqrt{1 - t^2}}{t / \sqrt{1 + t^2}} = - \frac{\sqrt{1 + t^2}}{\sqrt{1 - t^2}}.
\]
Final answer:
\[
\boxed{
\frac{dy}{dx} = - \frac{\sqrt{1 + t^2}}{\sqrt{1 - t^2}}.
}
\]