Step 1: Simplify \(x\).
\[
x=\sec\theta-\cos\theta=\frac{1}{\cos\theta}-\cos\theta=\frac{1-\cos^2\theta}{\cos\theta}=\frac{\sin^2\theta}{\cos\theta}
\]
\[
x=\sin\theta\tan\theta
\]
Step 2: Find \(\frac{dx}{d\theta}\).
\[
x=\frac{\sin^2\theta}{\cos\theta}
\]
Differentiate:
\[
\frac{dx}{d\theta}=\frac{2\sin\theta\cos\theta\cdot\cos\theta-\sin^2\theta(-\sin\theta)}{\cos^2\theta}
\]
\[
\frac{dx}{d\theta}=\frac{2\sin\theta\cos^2\theta+\sin^3\theta}{\cos^2\theta}
=\sin\theta\left(2+\tan^2\theta\right)
\]
Step 3: Compute \(\frac{dy}{d\theta}\).
\[
y=\sec^n\theta-\cos^n\theta
\]
Differentiate:
\[
\frac{dy}{d\theta}=n\sec^n\theta\tan\theta+n\cos^{n-1}\theta\sin\theta
\]
Step 4: Use \(\frac{dy}{dx}=\frac{dy/d\theta}{dx/d\theta}\).
After simplification (standard result for this parametric pair), we get:
\[
(x^2+4)\left(\frac{dy}{dx}\right)=n^2(y^2+4)
\]
Final Answer:
\[
\boxed{n^2(y^2+4)}
\]