We are given that \( x = r \cos \theta \) and \( y = r \sin \theta \). To find \( \frac{dy}{dx} \), we differentiate \( x \) and \( y \) with respect to \( \theta \):
\[
\frac{dx}{d\theta} = -r \sin \theta, \quad \frac{dy}{d\theta} = r \cos \theta.
\]
Thus, the derivative \( \frac{dy}{dx} \) is given by:
\[
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{r \cos \theta}{-r \sin \theta} = -\cot \theta.
\]
At \( \theta = \frac{\pi}{4} \), \( \cot \left( \frac{\pi}{4} \right) = 1 \), so:
\[
\frac{dy}{dx} = -1.
\]
Thus, the value of \( \frac{dy}{dx} \) at \( \theta = \frac{\pi}{4} \) is -1.