Step 1: Expand first term using binomial approximation.
\[
\left(1+\frac{2x}{3}\right)^{3/2}
\approx 1+\frac{3}{2}\cdot\frac{2x}{3}
=1+x
\]
Step 2: Rewrite second term.
\[
(32+5x)^{-1/5}
=32^{-1/5}\left(1+\frac{5x}{32}\right)^{-1/5}
\]
Now \(32=2^5\), so:
\[
32^{-1/5}=2^{-1}=\frac{1}{2}
\]
Step 3: Expand \(\left(1+\frac{5x}{32}\right)^{-1/5\).}
\[
(1+u)^n \approx 1+nu
\]
Here \(u=\frac{5x}{32}\), \(n=-\frac{1}{5}\).
\[
\left(1+\frac{5x}{32}\right)^{-1/5}
\approx 1-\frac{1}{5}\cdot\frac{5x}{32}
=1-\frac{x}{32}
\]
So:
\[
(32+5x)^{-1/5}\approx \frac{1}{2}\left(1-\frac{x}{32}\right)
\]
Step 4: Multiply both approximations.
\[
(1+x)\cdot \frac{1}{2}\left(1-\frac{x}{32}\right)
\approx \frac{1}{2}\left(1+x-\frac{x}{32}\right)
\]
\[
= \frac{1}{2}\left(1+\frac{31x}{32}\right)
= \frac{1}{2}+\frac{31x}{64}
\]
\[
= \frac{32}{64}+\frac{31x}{64}
= \frac{32+31x}{64}
\]
Final Answer:
\[
\boxed{\frac{32+31x}{64}}
\]