We are given the following information:
We can use the formula for variance:
\[ V(X) = E(X^2) - (E(X))^2 \]
Substitute the given values:
\[ 3 = E(X^2) - (6)^2 \] \[ 3 = E(X^2) - 36 \]
Now solve for \( E(X^2) \):
\[ E(X^2) = 3 + 36 = 39 \]
Answer: 39
Variance of the following discrete frequency distribution is:
\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Class Interval} & 0-2 & 2-4 & 4-6 & 6-8 & 8-10 \\ \hline \text{Frequency (}f_i\text{)} & 2 & 3 & 5 & 3 & 2 \\ \hline \end{array} \]