We are given the following information:
We can use the formula for variance:
\[ V(X) = E(X^2) - (E(X))^2 \]
Substitute the given values:
\[ 3 = E(X^2) - (6)^2 \] \[ 3 = E(X^2) - 36 \]
Now solve for \( E(X^2) \):
\[ E(X^2) = 3 + 36 = 39 \]
Answer: 39
Find the mean of the following distribution:
\[\begin{array}{|c|c|c|c|c|c|c|c|} \hline \textbf{Class-interval} & 11-13 & 13-15 & 15-17 & 17-19 & 19-21 & 21-23 & 23-25 \\ \hline \text{Frequency} & \text{7} & \text{6} & \text{9} & \text{13} & \text{20} & \text{5} & \text{4} \\ \hline \end{array}\]