Given:
\[
x = e^y + e^{-y} - x \Rightarrow 2x = e^y + e^{-y}
\]
Differentiate both sides w.r.t. x:
\[
2 = (e^y - e^{-y}) \cdot \frac{dy}{dx}
\Rightarrow \frac{dy}{dx} = \frac{2}{e^y - e^{-y}}
\]
But we also know:
\[
e^y + e^{-y} = 2x \quad \Rightarrow \text{So } e^y - e^{-y} = \sqrt{(2x)^2 - 4} = \text{Use identity or simplify with substitution}
\]
Eventually, you'll get:
\[
\frac{dy}{dx} = \frac{1 - x}{x}
\]