Differentiate both sides with respect to \(x\), using implicit differentiation:
\[
\frac{d}{dx} \left( x \cos y \right) = \frac{d}{dx} \left( \sin(x + y) \right).
\]
Using product and chain rules on the left:
\[
\cos y + x (-\sin y) \frac{dy}{dx} = \cos(x + y) \left( 1 + \frac{dy}{dx} \right).
\]
Rearranged:
\[
\cos y - x \sin y \frac{dy}{dx} = \cos(x + y) + \cos(x + y) \frac{dy}{dx}.
\]
Group terms involving \(\frac{dy}{dx}\):
\[
- x \sin y \frac{dy}{dx} - \cos(x + y) \frac{dy}{dx} = \cos(x + y) - \cos y.
\]
Factor \(\frac{dy}{dx}\):
\[
\frac{dy}{dx} \left( - x \sin y - \cos(x + y) \right) = \cos(x + y) - \cos y.
\]
Therefore,
\[
\frac{dy}{dx} = \frac{\cos(x + y) - \cos y}{- x \sin y - \cos(x + y)}.
\]