Step 1: Simplify expressions using trigonometric interpretation.
Let:
\[
\cos x=\frac{1}{\sqrt{1+t^2}}
\]
Then:
\[
\sin x=\sqrt{1-\cos^2x}
=\sqrt{1-\frac{1}{1+t^2}}
=\sqrt{\frac{t^2}{1+t^2}}
=\frac{t}{\sqrt{1+t^2}}
\]
Step 2: Compare with \(y\).
\[
y=\sin^{-1}\left(\frac{t}{\sqrt{1+t^2}}\right)
=\sin^{-1}(\sin x)
\Rightarrow y=x
\]
Step 3: Differentiate.
If \(y=x\), then:
\[
\frac{dy}{dx}=1
\]
Final Answer:
\[
\boxed{1}
\]