Given:
\[
x = a \sec \theta \Rightarrow \frac{dx}{d\theta} = a \sec \theta \tan \theta
\]
\[
y = b \tan \theta \Rightarrow \frac{dy}{d\theta} = b \sec^2 \theta
\]
Now use the chain rule:
\[
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{b \sec^2 \theta}{a \sec \theta \tan \theta}
= \frac{b}{a} \cdot \frac{\sec \theta}{\tan \theta}
= \frac{b}{a} \cdot \frac{1}{\sin \theta} = \text{(incorrect)}
\]
Wait — let's correct this:
\[
\frac{\sec \theta}{\tan \theta} = \frac{1/\cos \theta}{\sin \theta / \cos \theta} = \frac{1}{\sin \theta} = \csc \theta
\]
So:
\[
\frac{dy}{dx} = \frac{b}{a} \csc \theta
\]
This matches Option (B), not (A).
Correct Answer: (B) \( \frac{b}{a} \csc \theta \)
Correct Answer
Correct Answer: (B) \( \frac{b}{a} \csc \theta \)