We are tasked with finding the value of \( b^2 x^2 - a^2 y^2 \) given that:
\[ x = a \sec\theta \quad \text{and} \quad y = b \tan\theta. \]
Step 1: Substitute the expressions for \( x \) and \( y \) into \( b^2 x^2 - a^2 y^2 \).
First, compute \( x^2 \) and \( y^2 \):
\[ x^2 = (a \sec\theta)^2 = a^2 \sec^2\theta, \quad y^2 = (b \tan\theta)^2 = b^2 \tan^2\theta. \]
Substitute these into \( b^2 x^2 - a^2 y^2 \):
\[ b^2 x^2 - a^2 y^2 = b^2 (a^2 \sec^2\theta) - a^2 (b^2 \tan^2\theta). \]
Simplify:
\[ b^2 x^2 - a^2 y^2 = a^2 b^2 \sec^2\theta - a^2 b^2 \tan^2\theta. \]
Step 2: Factor out \( a^2 b^2 \).
\[ b^2 x^2 - a^2 y^2 = a^2 b^2 (\sec^2\theta - \tan^2\theta). \]
Step 3: Use the trigonometric identity \( \sec^2\theta - \tan^2\theta = 1 \).
From the Pythagorean identity:
\[ \sec^2\theta - \tan^2\theta = 1. \]
Substitute this into the expression:
\[ b^2 x^2 - a^2 y^2 = a^2 b^2 (1). \]
Simplify:
\[ b^2 x^2 - a^2 y^2 = a^2 b^2. \]
Final Answer: The value of \( b^2 x^2 - a^2 y^2 \) is \( \mathbf{a^2 b^2} \), which corresponds to option \( \mathbf{(4)} \).