We are given the following:
\[
x = 5 \tan t \quad {and} \quad y = 5 \sec t.
\]
We need to find \( \frac{dy}{dx} \) at \( t = \frac{\pi}{3} \).
Step 1: Differentiate \( x \) and \( y \) with respect to \( t \):
\[
\frac{dx}{dt} = \frac{d}{dt} \left( 5 \tan t \right) = 5 \sec^2 t.
\]
\[
\frac{dy}{dt} = \frac{d}{dt} \left( 5 \sec t \right) = 5 \sec t \tan t.
\]
Step 2: Use the chain rule to find \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{5 \sec t \tan t}{5 \sec^2 t} = \frac{\tan t}{\sec t}.
\]
Since \( \frac{\tan t}{\sec t} = \sin t \), we have:
\[
\frac{dy}{dx} = \sin t.
\]
Step 3: Now, evaluate \( \frac{dy}{dx} \) at \( t = \frac{\pi}{3} \):
\[
\sin \left( \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2}.
\]
Thus, the correct answer is option (C).