We know $x>5$ and $y<-1$. Consider option (1):
If $y<-1$, then $4y<-4$. Adding $x>5$ gives:
$x + 4y>5 - 4 = 1$. This inequality holds for all possible values under given conditions. So (1) is always true.
Option (2): $x>-4y$. If $y = -2$, then $-4y = 8$ and $x>5$ does not guarantee $x>8$. So not always true.
Option (3): $-4x<5y$. For $x>5$, $-4x<-20$. For $y=-2$, $5y = -10$, and $-20<-10$ is true, but not guaranteed for all $y<-1$.