Given \(x = 3 + 2\sqrt{2}\), we are to find the value of \((x^2 + \frac{1}{x^2})\).
First, let's calculate \(x^2\):
\(x = 3 + 2\sqrt{2}\)
\(x^2 = (3 + 2\sqrt{2})^2\)
Using the identity \((a+b)^2 = a^2 + 2ab + b^2\), we have:
\(x^2 = 3^2 + 2 \cdot 3 \cdot 2\sqrt{2} + (2\sqrt{2})^2\)
\(= 9 + 12\sqrt{2} + 8\)
\(= 17 + 12\sqrt{2}\)
Next, let's calculate \(\frac{1}{x}\) and then \(\frac{1}{x^2}\):
To find \(\frac{1}{x}\), rationalize the denominator:
\(\frac{1}{x} = \frac{1}{3 + 2\sqrt{2}}\)
Multiply numerator and denominator by the conjugate:
\(\frac{1}{x} = \frac{1 \cdot (3 - 2\sqrt{2})}{(3 + 2\sqrt{2})(3 - 2\sqrt{2})}\)
\(= \frac{3 - 2\sqrt{2}}{9 - (2\sqrt{2})^2}\)
\(= \frac{3 - 2\sqrt{2}}{9 - 8}\)
\(= 3 - 2\sqrt{2}\)
Now calculate \(\frac{1}{x^2}\):
\(\frac{1}{x^2} = (3 - 2\sqrt{2})^2\)
\(= 9 - 12\sqrt{2} + 8\)
\(= 17 - 12\sqrt{2}\)
Add \(x^2\) and \(\frac{1}{x^2}\):
\(x^2 + \frac{1}{x^2} = (17 + 12\sqrt{2}) + (17 - 12\sqrt{2})\)
\(= 17 + 17\)
\(= 34\)
The value of \((x^2 + \frac{1}{x^2})\) is \(\boxed{34}\).
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .
Find the missing code:
L1#1O2~2, J2#2Q3~3, _______, F4#4U5~5, D5#5W6~6