For the quadratic equation to have equal roots, the discriminant must be zero. The discriminant \( \Delta \) for the equation \( ax^2 + bx + c = 0 \) is given by:
\[
\Delta = b^2 - 4ac.
\]
Here, \( a = 1 \), \( b = 2(K+2) \), and \( c = 36 \). Thus, the discriminant is:
\[
\Delta = \left( 2(K+2) \right)^2 - 4 \times 1 \times 36 = 0.
\]
Simplifying:
\[
4(K+2)^2 - 144 = 0 \quad \Rightarrow \quad 4(K+2)^2 = 144 \quad \Rightarrow \quad (K+2)^2 = 36.
\]
Solving:
\[
K + 2 = 6 \quad \Rightarrow \quad K = 4, \quad \text{or} \quad K + 2 = -6 \quad \Rightarrow \quad K = -8.
\]
Thus, \( K = 4 \) or \( K = -8 \).