Given that \(x = \frac{1}{t^2}\) and \(y = \frac{1}{t^3}\), we need to find \(\frac{d^2y}{dx^2}\) at \(t=1\).
First, find \(\frac{dy}{dt}\) and \(\frac{dx}{dt}\).
\(\frac{dy}{dt} = \frac{d}{dt}\left(t^{-3}\right) = -3t^{-4}\)
\(\frac{dx}{dt} = \frac{d}{dt}\left(t^{-2}\right) = -2t^{-3}\)
Now, find \(\frac{dy}{dx}\) using the chain rule:
\(\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} = \frac{-3t^{-4}}{-2t^{-3}} = \frac{3}{2}t^{-1}\)
Differentiating \(\frac{dy}{dx}\) with respect to \(t\) gives:
\(\frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{3}{2}t^{-1}\right) \div \frac{dx}{dt}\)
\(\frac{d}{dt}\left(\frac{3}{2}t^{-1}\right) = \frac{3}{2}(-1)t^{-2} = -\frac{3}{2}t^{-2}\)
Thus,
\(\frac{d^2y}{dx^2} = \frac{-\frac{3}{2}t^{-2}}{-2t^{-3}} = \frac{3}{4}t\)
Evaluating this at \(t=1\):
\(\frac{d^2y}{dx^2}\bigg|_{t=1} = \frac{3}{4}(1) = \frac{3}{4}\)
Therefore, the correct answer is \(\frac{3}{4}\).