The determinant \( \Delta \) is given as:
\[\Delta = \begin{vmatrix} 1 & \cos x & 1 \\ -\cos x & 1 & \cos x \\ -1 & -\cos x & 1 \end{vmatrix}.\]
Expand the determinant:
\[ \Delta = 1 \cdot \begin{vmatrix} 1 & \cos x \\ -\cos x & 1 \end{vmatrix} - \cos x \cdot \begin{vmatrix} -\cos x & \cos x \\ -1 & 1 \end{vmatrix} +1 \cdot \begin{vmatrix} -\cos x & 1 \\ -1 & -\cos x \end{vmatrix}.\]
Compute each minor:
\[ \begin{vmatrix} 1 & \cos x \\ -\cos x & 1 \end{vmatrix} = 1 - \cos^2 x, \quad \begin{vmatrix} -\cos x & \cos x \\ -1 & 1 \end{vmatrix} = \cos x -\cos x = 0, \quad \begin{vmatrix} -\cos x & 1 \\ -1 & -\cos x \end{vmatrix} = \cos^2 x - 1. \]
Substitute back:
\[ \Delta = (1 - \cos^2 x) + 0 + (\cos^2 x - 1) = 2 - \sin^2 x.\]
Simplify:
\[\Delta = 2(2 - \sin^2 x).\]
This matches option (B).
The minimum value of \( \Delta \) occurs when \( \sin^2 x = 1 \), giving:
\[\Delta_{\min} = 2(2 - 1) = 2.\]
The maximum value of \( \Delta \) occurs when \( \sin^2 x = 0 \), giving:
\[\Delta_{\max} = 2(2 - 0) = 4.\]
Thus, options (B), (C), and (D) are correct.
\(\boxed{(B), (C), \text{ and } (D) \text{ only}}\).
List-I (Name of account to be debited or credited, when shares are forfeited) | List-II (Amount to be debited or credited) |
---|---|
(A) Share Capital Account | (I) Debited with amount not received |
(B) Share Forfeited Account | (II) Credited with amount not received |
(C) Calls-in-arrears Account | (III) Credited with amount received towards share capital |
(D) Securities Premium Account | (IV) Debited with amount called up |