If $\vec A + \vec B + \vec C = 0$, then $\vec A \times \vec B$ is equal to:
Show Hint
Important vector identities:
$\vec A \times \vec A = 0$
$\vec A \times \vec B = -(\vec B \times \vec A)$
Cross product is distributive over addition
These simplify many vector problems quickly.
Step 1: Use the given vector relation.
\[
\vec A + \vec B + \vec C = 0
\]
\[
\Rightarrow \vec A = -(\vec B + \vec C)
\]
Step 2: Take cross product with $\vec B$.
\[
\vec A \times \vec B = -(\vec B + \vec C)\times \vec B
\]
Step 3: Apply distributive property of cross product.
\[
\vec A \times \vec B
= -(\vec B \times \vec B + \vec C \times \vec B)
\]
Step 4: Use properties of cross product.
\[
\vec B \times \vec B = 0
\]
So,
\[
\vec A \times \vec B = -(\vec C \times \vec B)
\]
Step 5: Use anti-commutative property.
\[
\vec C \times \vec B = -(\vec B \times \vec C)
\]
Hence,
\[
\vec A \times \vec B = \vec B \times \vec C
\]
Final Answer:
\[
\boxed{\vec A \times \vec B = \vec B \times \vec C}
\]