Two vectors are perpendicular if their dot product is zero. So, we calculate the dot product \( \vec{a} \cdot \vec{b} \) and set it equal to zero.
The dot product \( \vec{a} \cdot \vec{b} \) is given by:
\[
\vec{a} \cdot \vec{b} = (3\hat{i} + \hat{j} - 2\hat{k}) \cdot (\hat{i} + \lambda \hat{j} - 3\hat{k})
\]
Using the distributive property of the dot product:
\[
\vec{a} \cdot \vec{b} = 3\hat{i} \cdot \hat{i} + 3\hat{i} \cdot \lambda \hat{j} + 3\hat{i} \cdot (-3\hat{k}) + \hat{j} \cdot \hat{i} + \hat{j} \cdot \lambda \hat{j} + \hat{j} \cdot (-3\hat{k}) + (-2\hat{k}) \cdot \hat{i} + (-2\hat{k}) \cdot \lambda \hat{j} + (-2\hat{k}) \cdot (-3\hat{k})
\]
Simplifying the dot products:
\[
= 3(1) + 3(\lambda)(0) + 3(-3)(0) + 1(0) + 1(\lambda)(1) + 1(-3)(0) + (-2)(0) + (-2)(\lambda)(0) + (-2)(-3)(1)
\]
\[
= 3 + 0 + 0 + 0 + \lambda + 0 + 0 + 0 + 6
\]
\[
= 9 + \lambda
\]
For the vectors to be perpendicular, the dot product must be zero:
\[
9 + \lambda = 0
\]
Solving for \( \lambda \):
\[
\lambda = -9
\]
Thus, the correct answer is:
\[
\boxed{-9}
\]