When the two waves \( y_1 \) and \( y_2 \) are superposed, the resultant wave can be expressed as a combination of a carrier wave and a modulation wave. The carrier frequency is determined by the average of the angular frequencies, while the modulation frequency is determined by their difference.
\[ y_1 = A_0 \sin(kx - \omega t), \quad y_2 = A_0 \sin(\alpha kx - \beta \omega t) \]
The resultant wave is given by the superposition of \( y_1 \) and \( y_2 \):
\[ y_{\text{resultant}} = 2A_0 \cos\left(\frac{\beta \omega - \omega}{2} t\right) \sin\left(\frac{\beta \omega + \omega}{2} t\right) \]
For \( \alpha = \beta = 2 \), the carrier frequency becomes:
\[ \text{Carrier Frequency} = \frac{\omega + 2\omega}{2} = \frac{3}{2} \omega \]
Thus, the correct statement is that the carrier frequency of the resultant wave is \( \frac{3}{2} \omega \).
In an oscillating spring mass system, a spring is connected to a box filled with sand. As the box oscillates, sand leaks slowly out of the box vertically so that the average frequency Γβ°(t) and average amplitude A(t) of the system change with time t. Which one of the following options schematically depicts these changes correctly?
At a particular temperature T, Planck's energy density of black body radiation in terms of frequency is \(\rho_T(\nu) = 8 \times 10^{-18} \text{ J/m}^3 \text{ Hz}^{-1}\) at \(\nu = 3 \times 10^{14}\) Hz. Then Planck's energy density \(\rho_T(\lambda)\) at the corresponding wavelength (\(\lambda\)) has the value \rule{1cm}{0.15mm} \(\times 10^2 \text{ J/m}^4\). (in integer)
[Speed of light \(c = 3 \times 10^8\) m/s]
(Note: The unit for \(\rho_T(\nu)\) in the original problem was given as J/mΒ³, which is dimensionally incorrect for a spectral density. The correct unit J/(mΒ³Β·Hz) or JΒ·s/mΒ³ is used here for the solution.)