Step 1: Recall the formula for range of a projectile.
\[
R = \frac{u^2 \sin(2\theta)}{g}
\]
If two projectiles have the same initial speed and same range, and are projected at angles \( \theta_1 \) and \( \theta_2 \), then:
\[
\sin(2\theta_1) = \sin(2\theta_2)
\]
This implies:
\[
2\theta_1 + 2\theta_2 = 180^\circ \Rightarrow \theta_1 + \theta_2 = 90^\circ
\]
Step 2: Recall the time of flight formula.
\[
T = \frac{2u \sin\theta}{g}
\]
Let \( T_A \) and \( T_B \) be times of flight of bodies A and B:
\[
\frac{T_A}{T_B} = \frac{\sin\theta_1}{\sin\theta_2}
\]
Since \( \theta_1 + \theta_2 = 90^\circ \Rightarrow \theta_2 = 90^\circ - \theta_1 \), so:
\[
\sin \theta_2 = \cos \theta_1
\]
\[
\frac{T_A}{T_B} = \frac{\sin \theta_1}{\cos \theta_1} = \tan \theta_1
\]
% Final Answer
\[
\boxed{\tan \theta_1}
\]